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Abstract

In this paper we discuss an extension to a popular gas storage valuation
method called the spot approach. Least-Squares Monte Carlo, which is the
basis for the spot approach, allows for multi-factor price processes. Such
price processes can capture more realistically the actual price behavior
present in energy markets. In this paper we demonstrate the application
of multi-factor Least-Squares Monte Carlo to gas storage valuation. We
study the impact of using multi-factor price processes on different aspects
of the valuation such as convergence, average storage value and distribu-
tion of storage values in a numerical example. We find a counter example
to the idea that an increase in market volatility leads to an increase in
storage value. As well, we find a counter example to the idea that the
natural hedging strategy of the spot approach is no hedge: a simple static
financial hedge can reduce the inherent risk of the spot approach. Finally,
we study the impact of model error related to the price process.

1 Introduction

Gas storages have traditionally been used to match supply and demand through-
out the year. In the current environment of liberalized gas markets including
third-party access to gas storage, valuation and hedging of gas storages deserves
our attention. Gas storages are managed by utilities and merchants all around
the world. Their motive is to either use gas storages for portfolio purposes, pure
market trading or a combination of these. In this paper we take the market-
based valuation perspective, as it can create an independent benchmark.

In practice three different valuation techniques are used to operate a gas
storage: (rolling) intrinsic, spread options, and the spot approach. In the in-
trinsic approach the current forward curve is taken, and an optimal volume path
is determined. An important decision is which forward to use for the intrinsic
valuation. One extreme assumption is that each individual day in the future
can be traded as a separate forward contract. A more realistic assumption is
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that only truly tradable products can be traded. We should realize that these
different assumptions might lead to quite different results, especially when ad-
ditional constraints are to be satisfied or when the intrinsic trading strategy is
applied dynamically in the rolling intrinsic approach.

The rolling intrinsic approach adjusts the intrinsic hedge over time whenever
additional money can be made. For example, when the December contract was
initially sold forward, but the February contract becomes more expensive, a
swap between the two months creates additional money. How much additional
money can be made depends on the movements of the forward curve and is
especially dependent on switches in the curve. Single-factor gas price models
lead to very few switches, and therefore do not demonstrate a lot of value.
Note that the assumption of a daily forward curve in combination with a rolling
intrinsic strategy (e.g. made in Bjerksund et al. [2]) leads to unrealistically many
switches; the correspondingly high storage value cannot actually be captured in
the market and should be considered rather theoretically.

A second valuation approach is based on spread options. The idea is to
capture the payoff of potential switches of the forward curve by a spread option.
In a world where virtually no spread options are being traded (as in the North-
American and European gas markets), the spread options approach becomes a
delta-hedging approach. An extended description can be found in Lai et al. [7].
The third valuation approach is the spot trading approach; it seeks to capture
short-term volatility by trading only in the spot, which is most volatile and
exhibits mean-reversion. This spot approach is the focus of the current paper.

If we consider price developments in commodity markets, we find they con-
tain a wide variety of changes in the spot and forward curve. It is impossible to
incorporate such changes into a one-factor stochastic price model. Researchers
and practitioners have therefore introduced multi-factor stochastic price mod-
els (see e.g. Schwartz [13], Hirsch [6], Lai et al. [7]). The introduction of
multi-factor price models has raised the question how to deal with them in the
optimization of different commodity derivatives. For example, a trader of gas
storage tries to benefit from the changing shape in the complete forward curve,
and wants to maximize his benefit given the different stochastic factors. Gas
storage valuation is thus an interesting candidate to study the impact of multiple
stochastic forward curve drivers.

Least-Squares Monte Carlo (or: LSMC) allows for the incorporation of mul-
tiple stochastic factors in the trading strategy (Longstaff & Schwartz [10]), but
this has not yet been demonstrated in commodity markets. Therefore we de-
cided to study the LSMC method with multiple stochastic factors using gas
storage valuation as an example. Our starting point for such analysis will be
the earlier work Boogert & De Jong [3], where we adjusted the LSMC method
for gas storage valuation using the spot approach. The price process used was a
1-factor mean-reverting price process. In this paper we create the extension to
multi-factor price processes, and it leads to various new and unexpected insights.
We first extend the original LSMC storage valuation method to a multi-factor
price process. Second, we analyze the impact on storage value and separate the
price assumptions in the backward valuation step from the price assumptions
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in the forward valuation step.
In particular, three new insights are derived in this paper concerning volatil-

ity and gas storage optimization. It is generally valid that an increase in market
volatility enhances the value of options. In this paper we find a counter exam-
ple: when the level of the forward curve, as influenced by a long-term stochastic
factor, becomes more uncertain, storage value actually decreases. This can be
explained by the fact that a storage trader does not benefit from movements in
the level of the forward curve, but rather from movements in the shape of the
forward curve. More uncertainty about the level blurs the trader’s assessment
of whether he should inject or withdraw. Apart from creating additional risk,
measured by a wider value distribution, the long-term stochastic factor reduces
storage value on average.

Second, we quantify the impact of model error related to the price process
underlying the simulations. The separation of the LSMC approach in a back-
ward (which yields the trading / exercise strategy) and a forward valuation step
(which yields the valuation) allows us to study the impact of model error on
the valuation. We find that as long as the backward and forward valuation step
are based on the same set of stochastic factors, the storage value is about the
same with one, two or three factor price processes. When we introduce model
error, we find instead a clear value reduction. More specifically, if we use in
the backward valuation step a reduced set of stochastic factors, and apply this
strategy in the forward valuation step with the full set of stochastic factors, we
find a clear loss of value. We thus demonstrate the impact of model error can
be significant.

Third, we propose a simple and effective hedging strategy for the spot ap-
proach. In earlier literature, the spot trading approach was always presented
as a rather risky strategy. In this paper we find that a simple static financial
hedge taken at the inception of the contract decreases the expected standard
deviation. In our numerical example the static financial hedge resulted in 50
percent less standard deviation. Thus, we conclude the spot approach can be
traded with less risk than previously assumed.

Several authors have recently discussed and applied the LSMC method into
different promising directions. To our knowledge Li [9] is the only reference
in which a multi-factor price process is used in the optimization of a spot-
based model. Independently, we have introduced a multi-factor price process
in the storage valuation model in a similar fashion. It is surprising that the
combination of the spot approach with a multi-factor price process has not been
described in detail so far. One potential reason could be that the spot approach
in principle only performs spot actions, which can lead to the (incorrect) idea
that for explaining this action, only a spot factor is relevant. In this paper
we will show that this interpretation yields incorrect valuations, and that one
should not apply it in practice.

Felix & Weber [5] compare the spot approach based on recombining trees
and the spot approach based on LSMC. In the case considered, they find that
the resulting valuations are very similar. They conclude the recombining trees
are faster, but less flexible with respect to different price simulations. To us,
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especially flexibility in price simulations are an important reason to choose for
the LSMC method.

Hirsch [6] points to the importance of price dynamics and speed of optimiza-
tion while applying the LSMC method to hourly electricity swing options. In
optimization, this problem is closely related to the gas storage valuation prob-
lem, because up and down swings are allowed within a certain given volume
range. When only up-swings are allowed (as in the example of the paper), the
problems even coincide. It is important to realize a multi-factor price process
is used, while only a spot factor is included in the regression. In our numerical
example we will show this can be improved significantly by adding more factors
to the regression.

Neumann & Zachmann [12] applied the spot approach to the German Dötlingen
storage, for which (an exception in Europe) utilization rates are published. They
find the model-implied and observed volume development do not match, and
conclude German storage sites are not operated on a purely profit maximizing
basis.

2 Valuation method

In this section we discuss the new valuation method for gas storage. We start in
section 2.1 with a description of a storage contract and in section 2.2 with the
spot optimization for the one-factor price process. Both were introduced before
in Boogert & De Jong [3]. In section 2.3 we present the focus of this paper: the
extension for the multi-factor price process.

2.1 Description of a storage contract

We denote the (accumulated) volume in storage at the start of day t by v(t). We
take an injection at day t as a positive volume change ∆v(t) and a withdrawal as
a negative volume change ∆v(t). We denote the payoff at day t by h(S(t),∆v(t))
and define for t = 0, . . . , T :

h(S(t),∆v(t)) :=

 −c(S(t))∆v(t) inject at day t
0 do nothing at day t
−p(S(t))∆v(t) withdraw at day t

(1)

where c(S(t)) and p(S(t)) represent the cost of injection and profit of with-
drawal, which can include both transaction costs and bid-ask spreads.

There can be different volumetric limitations on the followed strategy stem-
ming from the physical nature of a gas storage. Standard limitations include a
minimum and maximum volume level, and maximum injection and withdrawal
rates. The case of injection and withdrawal dependent on the accumulated vol-
ume (also called ratchets) can be included easily in terms of the discretization
of the accumulated volume. We denote the set of allowed volume levels at day
t by V(t), and the set of all allowed actions on day t being at volume v(t) by
D(t, v(t)).

4



2.2 Spot optimization for the one-factor price model

Similar to American option valuation, a central role in the storage valuation is
played by the continuation value. We define the continuation value as the value
we attach to the contract after taking an allowed action, that is ∆v ∈ D(t, v(t)).

The valuation is performed by discretizing both volume and volume actions
into a fine grid. In Boogert & De Jong [3] it was motivated that it is more
efficient to consider continuation values on the time-volume grid instead of per
time unit. The continuation value is thus denoted by C(t, S(t), v(t+ 1;n)). In
order to handle situations where actions fall outside the grid, we perform an
interpolation where continuation value for intermediate volume levels are cal-
culated as the distance weighted average of the continuation values at adjacent
volume points.

If we denote the value of a storage contract starting on day t at volume
level v(t) by U(t, S(t), v(t)), then U(t, S(t), v(t)) satisfies the following dynamic
program:

U(t, S(t), v(t)) = max
∆v∈D(t,v(t))

{h(S(t),∆v) + C(t, S(t), v(t),∆v)} (2)

for all t. The dynamic program can be initialized at the end of the contract
using either zero costs (the desired end volume is reached) or a penalty cost (the
desired end volume is not reached).

The assumption behind regression-based Monte Carlo techniques such as
LSMC is that one can approximate continuation values by a (finite) linear com-
bination of known basis functions ϕq(S(t)) of the current state. Because the
continuation values are taken on the time-volume grid, the state in the basis
functions can be summarized by a single variable: the spot price S(t). This
means we approximate

C(t, S(t), v(t+ 1;n)) ≈
Q∑

q=1

ϕq(S(t))βq,t (3)

for certain constants βq,t ∈ R and Q ∈ N.
In practice the continuation values are unknown, and we follow Longstaff &

Schwartz [10] in assuming the following approximation for all M independent
paths from the simulation, b = 1, . . . ,M :

Cb(t, Sb(t), v(t+ 1;n)) ≈ e−δY b(t+ 1, Sb(t+ 1), v(t+ 1;n)) (4)

where we denote by Y b(t + 1, Sb(t + 1), v(t + 1;n)) the accumulated value of
future realized cash flows in path b following optimal decisions starting at time
t+1 being at volume level v(t+1) and price Sb(t+1). With approximation (4),

we can estimate the best regression coefficients β̂ by an ordinary least-squares
(OLS) regression. If we substitute these β̂ back into Equation (3), we get an
approximation Ĉb(t, Sb(t), v(t;n)+∆v) of the continuation value for all volume
points v(t;n). This allows us to determine the optimal action for all volume
points v(t;n).
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2.3 Spot optimization for the multi-factor price model

The key ingredient for the spot optimization is to find a good approximation
for the expected continuation value based upon the simulated spot prices. In a
one-factor model the single spot factor explained the behavior of the complete
forward curve. In a multi-factor price model there are several factors driving
the forward curve.

A natural extension in case of multiple factors is to include them all as
explanatory variables in the basis. This idea was already proposed in the original
paper by Longstaff & Schwartz [10]. For example, Longstaff & Schwartz value
a cancelable index amortizing swap where the swap term structure is driven by
two independent processes: X,Y . In the regression they use 9 basis functions:
a constant, the first three powers of the value of the underlying non-cancelable
swap, and X,X2, Y, Y 2, XY .

In case more than one factor is introduced, not only the spot factor, but also
the forward factors and combinations between them can be used inside the basis.
The number of basis functions naturally grows by the inclusion of more factors.
One alternative, e.g. used in Stentoft [15], uses a complete set of polynomials of
order K. This means that all products and cross products of order less than or
equal K are included. In our numerical example with a three-dimensional price
process, K = 2 implies a basis of size 10, and K = 3 implies a basis of size 25
(using Stentoft [15, Eq. 20] with L = 3). This means in practice K is limited
to either 2 or 3. Another alternative, e.g. used in Longstaff & Schwartz [10],
uses a limited but arbitrary combination of them.

In a multi-factor setting it becomes more important how to perform the
regressions in a stable manner (a similar point was made in Hirsch [6]). In
our numerical example we found that using a complete set of polynomials of
order 3 led to problems with inversion of matrices, whereas a complete set of
polynomials of order 2 underperformed. Therefor we have chosen to work with
a limited but arbitrary combination of polynomials.

The usual practice in LSMC applications is to keep the number of basis
functions constant over time. We compare this method to a greedy heuristic
which at every time step takes a large basis and reduces the basis until the
inverse becomes stable. This heuristic is inspired by Longstaff & Schwartz [10,
Prop. 1] which led to the criterion to increase the number of basis functions for
a given number of simulations until the value no longer increases. Stentoft [16]
motivates that instead both the number of basis functions and the number of
simulations should be increased. In our greedy heuristic we keep the number of
simulations fixed. The only difference between the usual method and the greedy
heuristic concerns how the regression step is performed. It is worth noting that
the greedy heuristic adds only limited calculation time. One can determine
whether the inverse is stable without actually performing a computationally
expensive inverse.

First, suppose there is only a single spot factor. We let P the vector of
simulated spot prices of length M , and define the (M,Rspot) regressor matrix
X using X := [1, P 1, P 2, . . . , PRspot−1] where P i denotes the i-th member of
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some polynomial family, e.g. power. We assume a linear relation between the
M -vector continuation value V and the regressor matrix X such that V = XB,
where B is a vector of constants of length Rspot. Then, B can be estimated by
the Moore-Penrose pseudo-inverse (also known as generalized inverse):

B = (X ′X)−1X ′V (5)

where −1 denotes the inverse of square matrix X ′X. The greedy heuristic sets
Rspot to a large number and decreases Rspot until the conditional number (mea-
sured by Matlab function rcond) crosses a pre-set barrier.

Next, suppose there are multiple price factors, and we need to approxi-
mate the continuation value using both spot and forward prices. We pro-
pose to use the above greedy heuristic in a sequential way. First we per-
form the above approximation using only the spot factor, and then sequen-
tially consider whether we can improve the approximation by including the
other price factors and/or cross-factors. For example, a basis could become
[1, P 1

spot, P
2
spot, P

3
spot, P

1
LT , P

2
LT , PWS , P

1
spot∗LT ] if we start withRspot = 4, RLT =

RWS = 3, Rspot∗LT = Rspot∗WS = RLT∗WS = 1. Here R· is the maximum
number of members included of type ·. This is the setting we use in part of our
numerical example.

The greedy heuristic leads to basis X̂, which can then be inverted again.
This means we have established the expected continuation value for all grid
points and all simulated prices, and we are back into our original setting. The
next step is to find the action which yields the highest total value (equal to
current payoff + expected continuation value).

An alternative extension, presented by Li [9], extends the one-factor spot
approach using the following two step method.1 First, estimate loading factors
to describe the forward curve movements present inside the simulation using
principal components analysis (or: PCA). Second, use the loading factors as
state variables in the regression.

The main difference between the two methods lies in the first step. We
propose to use the original factors of the price simulation instead of estimated
loading factors. One advantage is that that the price process can combine time-
to-maturity and time-of-maturity effects, whereas PCA focusses on time-to-
maturity effects. An example how time-of-maturity effects can impact PCA can
be found in Koekebakker & Ollmar [8]. They find that in the Nordic electricity
market more than 10 PCA factors were needed to explain 95% of the term
structure variation. In our numerical example we use a price process containing
both time-to-maturity and time-of-maturity effects. Another difference is that
Li [9] estimates one pair of loading factors, whereas we use the time-varying
price factors. An alternative to the method by Li would be to re-estimate the
loading factors at each time step in order to capture time-varying effects. This
would be especially relevant if the simulations contain structural breaks. In

1Although Li [9] also mentions the extension of the spot approach with bid-ask spreads,
we note these were already present in Boogert & De Jong [3, Eq. 3+4].
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addition to the different factor method, we study the convergence behavior and
the impact of using different basis functions, which are not present in Li [9].

3 Empirical results

In the LSMC method it is not a priori clear which kind of basis functions,
how many basis functions and how many paths to use. We investigate these
questions in this section for a specific numerical example. In section 3.1 we
describe the price process and in 3.2 the specific storage we will study. In section
3.3, respectively 3.4 and 3.5, we study the impact of different trading strategies,
respectively the impact of different basis functions and market parameters. In
3.6 we discuss the results for a more flexible storage.

3.1 Price process

In this numerical example we use a three-factor price model. It is an extension
of the mean-reverting one-factor Schwartz [13] model used in Boogert & De Jong
[3]. A common extension to that model is to introduce a second factor which
moves all prices on the forward curve. An example is the long-term/short-term
model by Schwartz & Smith [14]. Our third factor moves the winter-summer
spread in the forward and spot market. To our knowledge, this explicit modeling
of the winter-summer spread has not been published in the literature so far. The
advantage is that the winter-summer spread is naturally monitored in the gas
forward market and thereby provides a direct link to the market behavior.

The starting point for our three-factor model is the original mean-reverting
one-factor Schwartz [13] model, also referred to as a discrete-time Ornstein-
Uhlenbeck process. In log-terms it is given by

d lnPST (t) = κ

[
µ(t)− lnPST − (σST )2

2κ

]
dt+ σST dWST (t) (6)

where PST (t) is the spot price and the mean level µ(t) is a deterministically
time varying function. The daily mean-reversion rate κ and volatility σST are
assumed to be constant.

For the three-factor model we make µ(t) stochastic using two additional
factor returns: a long-term (LT) and a winter-summer (WS) factor. We define
µ(t, T ) as the mean level T periods from now, measured at time t. The variable
µ(t, t) then naturally becomes the spot mean level. The two additional factor
returns affect both the spot price and the forward mean level. The long-term
factor affects all prices on the curve equally. This move is independent from
where we are on the forward curve (T ). The impact of the third factor, however,
depends on where we are in the season: a positive return moves winter prices up,
summer prices down and leaves prices in between less affected. This dependency
is captured by the function P seas(t). We assume there is no correlation between
the three stochastic Brownian motions WST (t), WLT (t) and WWS(t).
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d lnPST (t) = κ

[
µ(t, t)− lnPST − (σST )2

2κ

]
dt

+ σST dWST (t) + σLT dWLT (t) + σWSP seas(t)dWWS(t) (7)

µ(t, t) = µ(t, 0) + σLT
t∑

s=1

dWLT (s) + σWSP seas(t)

t∑
s=1

dWWS(s)(8)

The seasonal dependency function P seas(t) is constructed as follows. First,
we identify the highest point on the forward curve with the winter (e.g. first
of February), and 6 months later with the summer. Next, we desire that if the
winter-summer spread changes due to a stochastic move, these movements have
an appropriate effect on the contracts around the summer and the winter date.
We model this effect using a sine-function P seas(t) with a periodicity of one
year. The highest point of 0.5 is on the winter date, and the lowest point of
−0.5 is on the summer date. In this way the complete forward curve changes
with the winter-summer spread. The stochastic winter-summer movement thus
changes the winter-summer spread.

The three-factor price process combines a time-of-maturity effect with a
time-to-maturity effect. There are four parameters to be estimated from ex-
ternal data: κ, σST , σLT and σWS . The long-term volatility almost equals
the volatility of an annual contract further on the curve. Such a contract, e.g.
1 year ahead, is not dependent on the winter-summer variations and, assum-
ing sufficient mean-reversion, it is hardly dependent on the short-term (spot)
returns.

To derive the winter-summer volatility we use a Q1-forward and a Q3-
forward contract. The difference in return between the Q1 and Q3 leads to
a series of winter-summer returns. Using the integral over the appropriate 3-
month period of the seasonal sine-function, the Q1 and Q3 contract have a
weight of approximately 0.9 on the ‘peak’ winter-summer volatility. Conse-
quently, σWS equals the volatility of the Q1-Q3 return series divided by 0.9.

To derive the spot mean-reversion rate and short-term volatility we use a
history of spot prices. First, we clean the returns from the long-term and sea-
sonal dependence (derived from the forward price returns). The problem then
is that the mean-level is stochastic and unobserved. One could use a filtering
technique to jointly derive the development of µ(t, t) and the spot parameters.
However, for practical reasons, in this calibration, we assume that µ(t, t) can be
approximated by the log of the month-ahead forward price. For a more detailed
explanation we refer to De Jong & Schneider [4].

As a base case in the remainder of this paper we will be using κ = 12%,
σST = 100%, σLT = 20% and σWS = 20%. These parameter estimates corre-
spond with rounded numbers of estimates obtained from Dutch TTF data for
the period 2008-2010.
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3.2 Example setting

In our numerical example we study the following test storage:

• minimum volume = 0 units, maximum volume = 100 units

• start volume = end volume = 0 units

• maximum injection = maximum withdrawal = 1 unit/day

• trading costs: 0

• trading period: 1 year

• spot volatility σST = 100%, long-term volatility σLT = 20%, winter-
summer-volatility σWS = 20%, spot mean-reversion rate κ = 12%

To study the impact of using a multi-factor price process and a multi-factor
optimization, we consider three different cases as in Table 1. Case 1 represents
the approach in Boogert & De Jong [3] where a one-factor model (spot factor)
was used to value a gas storage. The only basis function in case 1 is the spot
factor. Case 2 represents an extension to case 1 by incorporating a multi-factor
price process (spot, long-term and winter-summer factor) for the simulation
of prices. Meanwhile the approach from Boogert & De Jong is maintained to
optimize the storage. The resulting spot prices are simply taken and used in the
basis for the optimization. Thus, while there are additional price factors used
for the simulation of prices these are neglected in the basis. In this way the only
basis function in case 2 is the spot factor. Case 3 represents an extension to
case 2 as it changes the approach used to optimize the gas storage. In case 3 the
additional price factors (spot, long-term and winter-summer factor) are included
in the basis in the optimization, such that we have three basis functions. Case 3
represents our suggested approach to use the three factors both in the simulation
of prices and in the optimization.

Case Simulation Optimization
spot lt ws spot lt ws

1 yes no no yes no no
2 yes yes yes yes no no
3 yes yes yes yes yes yes

Table 1: Characteristics of the three study cases. We use either 1 or 3 factors
for the simulated price process, and either 1 or 3 factors for the basis functions
in the optimization

In Figure 1 we show the employed forward curve for the numerical example.
In the figure also the development of the spot prices is indicated for case 2 and
3 (including long-term and winter-summer volatility) by means of the 10% and
90% percentiles of the simulated spot prices.
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Figure 1: Forward curve (middle) together with the 10% and 90% percentiles
of the simulated spot prices for storage case 2 and 3 with 10000 simulations

Whenever sensitivity analysis is presented in this paper, the results are based
on the same 60 different seeds.

3.3 Impact of different trading strategies

We implemented the discussed algorithm in Matlab. As a start we valuate
the storage using the different strategies mentioned in the introduction. The
results are given in Table 2. We see the storage trader can make a profit of 306
assuming he can trade every day in the future individually. Assuming only the
truly tradable products can be traded (in this case assumed to be 6 months,
4 quarters, 3 seasons and 3 years), the value decreases to 275. If we perform
a tradable rolling intrinsic strategy (here we assume once a month rehedging)
we capture 275 at the start date and an expected additional 102 extrinsic value
over the life time of the contract. The spot strategy delivers an expected 665,
albeit with a larger standard deviation than the rolling intrinsic (270 versus 44).

We found out it is possible to strongly reduce the standard deviation of the
spot strategy in our example by inclusion of a static financial hedge on the
forward market. Because we assume no costs in this example and the price
process does not contain any risk premium, the expected value of the static
financial hedge is zero. The expected value including the static financial hedge
thus remains 665. The standard deviation however reduces from 270 to 114.
In case transaction costs would be present, these would influence the value of
both the spot strategy and the static financial hedge. If we assume the bid-ask
spread at the spot and forward market to be 0.20, the expected value of the
static financial hedge reduces from 0 to −26 (130 volume units are traded at
the forward market and later unwound at the spot market). The application of
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a static financial hedge in combination with the spot approach appears to be a
new result in the spot approach literature, and we see hedging as an interesting
direction for future research. For example, one could investigate the possibility
to maintain a dynamic hedge.

In our example, we constructed the static financial hedge as follows. First
we performed the spot approach as proposed above. This results in an expected
action for each day in the contract period which we aggregate into monthly
actions. The hedge already sells gas at day 0 on the forward market when
the expected monthly action is negative, and already buys gas at day 0 on
the forward market when the expected monthly action is positive. When the
forward hedge goes into delivery, we take the opposite position in the spot
market. There are two things worth pointing out. In the first place, note that the
static financial hedge does not influence our spot approach. The spot approach
during the contract period functions independent of the existing forward hedge
position. In the second place, note that we used in our example a static financial
hedge. The position is taken at time zero, and is not changed regardless of the
subsequent price development during the contract period.

Strategy Mean St. dev.
Daily intrinsic value 306

Tradable intrinsic value 275
Spot value 665 270

Spot value incl. hedge 665 114
Rolling intrinsic value 377 44

Table 2: Valuation results for storage case 3 with 10000 simulations for different
trading strategies

Next, let us compare the results from storage case 3 (use multiple factors
in simulation and optimization) with the results from storage case 1 (use only
spot factor in simulation and optimization) and 2 (use multiple factors in sim-
ulation, and only spot factor in optimization). The resulting valuation is given
in Table 3 and the resulting histograms are shown in Figure 2. It is obvious
that not including multiple price factors into the basis has a negative effect on
the valuation: the expected value decreases from 665 (storage case 3) to 497
(storage case 2)! From the histograms we see a large negative tail in case 2,
which is not present in case 3. This can be explained by the fact that spreads
are not appropriately monitored in storage case 2. If for example, the forward
curve moves up, an initially high spot price might not be high anymore. This
can lead to wrong decisions, and negative outcomes as indicated by the large
negative tail. The lowest diagram indicates the static financial hedge works on
both sides of the distribution: the static financial hedge cancels out both large
negative and large positive results from the spot strategy.

If we compare storage case 1 with storage case 3, we compare the appro-
priate valuations of a one-factor with a multi-factor price process (use as many
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factors in the optimization as in the simulation). We see that the expected
value increases from 654 in case 1 to 665 in case 3, while the standard deviation
increases from 96 to 270 in case 3 without a hedge (respectively 114 for case
3 with a hedge). It is not surprising the standard deviation increases because
there is more uncertainty. Taking this uncertainty into account, the spot strat-
egy creates an additional profit of 11. We conclude that taking into account
uncertainty might yield additional profits, as long as this uncertainty is taken
into account in the optimization.

The above results were produced using a single initial seed. Let us consider
whether these results are consistent when we use a different number of simula-
tions or a different initial seed. For this reason we compare results for 8 different
numbers of simulations and 60 different initial seeds. The results are summa-
rized in Figure 3, where we show the mean of the 60 storage valuations for the 8
different numbers of simulations. From Figure 3 we conclude the above results
are consistent. It also shows that starting at 5000 simulations the results ap-
pear stable, especially in the relevant storage case 3. The standard convergence
of a Monte Carlo method is 1√

N
if N is the number of simulations. In order

words, the logarithm of the standard error versus the logarithm of the number
of simulations has a slope of −0.5. In the lower panel of Figure 3, we present
the log-log plot. The slope was estimated to be −0.51 (case 1), −0.46 (case 2)
and −0.50 (case 3), which is close to the expected theoretical value −0.50.

Case Mean St. dev.
1 654 96
2 497 259
3 665 270

3 + hedge 665 114

Table 3: Valuation results for storage case 1, 2 and 3 with 10000 simulations
for the spot strategy

3.4 Impact of different basis functions

In the previous subsection we discussed how many simulations to use. In this
subsection we discuss which kind of basis functions and how many of them to
choose. For this reason we compare the storage valuation using five different
polynomial families. Moreno & Navas [11] used ten different families and found
small differences between them on a simple derivative like an American put but
large differences on a difficult derivative like the option on the maximum of
five assets. In our test we use five of the ten families employed by Moreno &
Navas. These five families are presented in Table 4: besides powers, we employ
Chebyshev of the first kind A, Legendre, Laguerre and Hermite A.

Moreno & Navas point to the fact the families are orthogonal on certain
intervals, but state “In most of the cases the range of underlying prices is differ-
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Figure 2: Resulting value histograms from the three different storage cases. The
bottom diagram represents case 3 with the static financial hedge included

ent from the interval [a, b], so that the basis functions will not be orthonormal.
Consequently, we should increase the number of terms used in the regression.”
In this paper we instead standardize the explanatory variables to align with
the orthogonality intervals. Our standardization is given in column 4 of the
lower table in Table 4. The remainder of the table is taken from Abramowitz
& Stegun [1].

In particular, we perform standardization different from most option appli-
cations where one normally divides by the strike and does not consider out-of-
the-money prices. This leads for example for an American put to the interval
[0, 1]. This approach is not valid for gas storage valuation because there is no
strike. In Figure 4 we consider the impact of standardization in our numeri-
cal example. In that figure we show the distribution of the three factors after
standardization by substraction of the mean and division by three times the
standard deviation. From these histograms it is clear that division by three
times the standard deviation yields a transformation to [−1, 1] for most of the
data points. This is relevant for Legendre and Chebyshev of the first kind A,
which have orthogonality interval [−1, 1].

As indicated by Moreno & Navas [11], to use no weighting implies all the
families can be rewritten into ordinary powers, creating the same regression.
This means one expects no differences in the valuation from a theoretical per-
spective although numerical errors can occur. We find this to be correct for
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Figure 3: Top diagram: average value for case 1 (dots), case
2 (x) and case 3 (line) for different number of simulations:
500, 1000, 2500, 5000, 7500, 10000, 12500, 15000. Bottom diagram: loga-
rithm of the standard error versus the logarithm of the number of simulations.
Basis: non-greedy powers

all cases except when case 3 is solved with the greedy heuristic. In that case
Hermite polynomials clearly under perform, which is in line with the results
obtained below.

Therefore we apply weighting as presented in Table 4. To be precise, we first
standardize our price factors, then apply the recurrence relation, and finally
multiply with the weighting factor. The results are given in Figure 5 for the
non-greedy optimization and Figure 6 for the greedy optimization. We can draw
a number of conclusions from here:

• Greedy optimization creates lower values than the non-greedy optimiza-
tion. The differences are especially large when Hermite polynomials are
used.

• Chebyshev and Hermite polynomials under perform in all cases in the
non-greedy and greedy optimization basis. Surprisingly in the greedy op-
timization of case 1, Hermite polynomials still perform well.

• Legendre and powers provide exactly the same estimates for the mean
value in the non-greedy optimization, which are almost the same as La-
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Family P0 P1 Pn+1 a b
Powers 1 x xPn – –

Chebyshev 1A 1 x 2xPn − Pn−1 −1 1
Legendre 1 x [(2n+ 1)xPn − nPn−1]/(n+ 1) −1 1
Laguerre 1 1− x [(2n+ 1− x)Pn − nPn−1]/(n+ 1) 0 ∞
Hermite A 1 2x 2xPn − 2nPn−1 −∞ ∞

Family weight result x̂
Powers – – (x− µ)/σ

Chebyshev 1A (1− x2)−1/2 π/2 (x− µ)/(3σ)
Legendre 1 2/(2n+ 1) (x− µ)/(3σ)
Laguerre e−x 1 1 + (x− µ)/(3σ)

Hermite A e−x2 √
π2nn! (x− µ)/σ

Table 4: Description of the different basis families. In the upper table we provide
for five different basis functions, the first two members (column 2 and 3) together
with the recurrence relation (column 4) and the orthogonality interval (column 5
and 6). In the lower table we provide the weight function (column 2), the result
of integration of two non-identical members (column 3) and our standardization
(column 4). µ and σ are the mean respectively standard deviation of x

guerre. In the greedy optimization Legendre creates slightly higher mean
value and shows better standard deviations than the powers and Laguerre.

• Convergence of Legendre and Laguerre is similar to powers, and the gra-
dient of the log-log plot remains around −0.50 for all three in greedy and
non-greedy optimization, similar as we found earlier for powers in the
previous subsection. However, in the greedy optimization, the standard
deviations of Laguerre increases again when we increase the number of
simulations above 10000 whereas the others continue to go down.

• Because powers take less computational time than Legendre we conclude
powers are the preferred choice of basis functions.

3.5 Impact of market parameters

We compare the results if the different market parameters change: long-term
volatility, short-term volatility, winter-summer volatility and mean-reversion.
Results are obtained by changing a single market parameter, and by averaging
the result of 60 initial seeds for the case of 10000 simulations. The results are
presented in Figure 7.

We note the special behavior which the storage value shows with respect to
volatility: storage value is increasing in both spot and summer-winter volatility
but is decreasing in the long-term volatility. This goes against the common
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Figure 4: Impact of standardization by subtracting the mean and dividing by
three times the standard deviation of each of the three different factors: spot,
long-term and winter-summer. Prices taken from case 3 at day 200

intuition that all volatility is good for the storage trader. This exception can
be understood if we consider what long-term volatility means for the storage
trader. With increasing uncertainty about the long-term level it becomes harder
to decide whether prices are high or low today. At the same time, the storage
trader does not benefit if the level of the forward curve changes, only if the
shape of the forward curve changes.

3.6 A fast storage

The setting for the above example was a relatively slow storage, which could
represent a depleted field gas storage. In this subsection we perform a robustness
check: we consider here a fast storage, which could represent a salt cavern gas
storage. For this reason we change the injection to 2 units (previously 1 unit)
and withdrawal rate to 5 units (previously 1 unit), while keeping the same
settings for the remainder of the example. In particular, the maximum volume
remains at 100 units.

This fast storage can create a lot more value than the slow storage as it can
perform several cycles going from minimum to maximum volume and back to
minimum volume again. It can thus benefit better from short-lived price spikes,
which is reflected in the storage valuation: the expected value increased from
665 to 1650.

For the fast storage we have repeated the valuations with different number
of simulations and considered sensitivities to the different market parameters.
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Figure 5: Left diagrams: average value for the three different cases for different
numbers of simulations: 500, 1000, 2500, 5000, 7500, 10000, 12500, 15000. Right
diagrams: logarithm of the standard error versus the logarithm of the number
of simulations. Chebyshev (x), Hermite (o), polynomial, Legendre and Laguerre
(line) overlap. Non-greedy basis

The results can be found in Figure 8 and Figure 9 (for the slow storage it were
Figure 5 and Figure 7). We can conclude from these Figures that there is no
qualitative difference between the two cases in these aspects: the Hermite and
Chebyshev polynomials perform less good than Legendre, powers and weighted
Laguerre. The direction of all the sensitivities is the same, where the long-term
volatility has a negative slope.

4 Conclusion

In this paper we considered the multi-factor aspect of the Least-Squares Monte
Carlo method applied to gas storage valuation. Using multi-factor models we
are better able to describe the actual price behavior present in energy markets.
As a result, our assessment of the value and risks involved in gas storage trading
come closer to reality. We discuss in this paper how to optimally price and hedge
a storage asset in such a setting.

We find the application of Least-Squares Monte Carlo works well, and con-
clude we can include multi-factor price models into gas storage valuation by
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Figure 6: Left diagrams: average value for the three different cases for different
numbers of simulations: 500, 1000, 2500, 5000, 7500, 10000, 12500, 15000. Right
diagrams: logarithm of the standard error versus the logarithm of the num-
ber of simulations. Chebyshev (x), Hermite (o), polynomial (dots), Legendre
(diamond) and Laguerre (line). Greedy basis

a spot approach. When we compare different alternative basis functions, sim-
ple powers show a good performance. Going from a one-factor to a multi-factor
price model, several observations can be made. First, the number of simulations
should be increased, although a limited number like 5000 simulations already
provides stable results. Second, we stress it is important to use the same factors
for the simulation and optimization. More precisely, with a multi-factor process
driving the prices, the model will undervalue the gas storage if the optimization
only contains a single spot factor. Third, in a multi-factor setting the com-
mon wisdom that volatility is desirable for gas storage traders can break down.
Finally, a multi-factor specification is clearly preferred above a single-factor
specification: it allows for a better representation of actual price behavior, and
shows a more realistic variation in potential storage trading results with and
without hedging.

An interesting direction for future research concerns the hedging of the spot
approach. In our numerical example we find a static financial hedge can yield
a significant reduction of the estimated inherent risk. This new idea partially
closes the gap between the inherent risk of the rolling intrinsic and spot ap-
proach, which makes the spot approach also interesting for traders with a limited
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Figure 7: Sensitivity analysis of the four market parameters. Value is calculated
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risk appetite.
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