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In this paper we show how cointegration can be applied to capture the joint
dynamics of multiple energy spot prices. For an example system we study the Title
Transfer Facility, the Zeebrugge gas spot market and the National Balancing
Point gas spot market, and, additionally, the Amsterdam Power Exchange power
spot market, since these markets are strongly connected in terms of physical
transportation and generation of power from gas. We develop a cointegrating
multi-market model framework that is able to plausibly connect different single-
market spot-price models. This is achieved by considering the mean-reverting
spot-forward price spreads instead of spot prices only. Our analysis shows that
the gas prices are strongly cointegrated, with a specific connection pattern for the
markets, whereas cointegration of gas and power prices is at long-term forward
price levels only.

1 INTRODUCTION

Exposures in energy markets often involve a number of commodities. They are often
directly attributable to spread positions rather than to outright positions. For example,
a company trading between different countries faces geographical spread exposures,
a company with gas-fired power generation assets faces spark spread exposures, a
company with gas storage capacity faces time spread exposures, and so on. Yet most
research focuses on the price dynamics of single commodities in single markets. For
example, the first two papers in the Fall 2008 issue of this journal focused on Nord Pool
electricity (Borak and Weron (2008)) and NewYork Mercantile Exchange (NYMEX)
natural gas (Spargoli and Zagaglia (2008)). Most “energy” papers actually focus on
electricity alone: examples are Longstaff and Wang (2004), Koekebakker and Ollmar
(2005) and Lucia and Schwartz (2002), who investigate the dynamics of electricity
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28 C. de Jong and S. Schneider

prices on the Pennsylvania–New Jersey–Maryland (PJM) and Nord Pool electricity
markets.

There is, nevertheless, a range of literature that tries to find common factors in
forward prices of more than one commodity. Westgaard et al (2008) apply Kalman
filtering to prices of propane, butane and naphtha; Lin and Tamvakis (2001) study
spillover effects from one energy futures market to the other. One of the earliest
studies on the joint dynamics of multiple commodity prices is presented in Pindyck
(1999, 2001). Pindyck considers the long-run dynamics and finds evidence for cycles,
though at a very low mean-reversion speed.

The motivation for writing this paper is to develop a simulation model for gas and
power spot prices on different markets that can be used for valuation and risk man-
agement in a day-to-day environment in energy trading. The model should produce
realistic dynamics and communicate well with any forward curve simulation model.
More specifically, the aim of this paper is to show how cointegration can be applied
to capture the joint dynamics of multiple spot prices. We use a formulation in which
each spot series is mean reverting to prompt month forward prices (which is similar
to the formulation in Blanco et al (2002)), thereby also capturing the linkage between
spot and forward markets.

2 COINTEGRATION STUDIES IN ENERGY MARKETS

Cointegration is quite a general concept and has been applied to energy markets
by several researchers, though mainly to forward prices. For example, Brunetti and
Gilbert (2000) and Figuerola-Ferretti and Gonzalo (2008) study cointegration between
NYMEX and the International Petroleum Exchange’s crude oil futures prices; Gjol-
berg and Johnsen (1999) study cointegration between crude and refined oil prices. An
even wider range of commodities is the subject of the cointegration analysis of Serletis
and Herbert (1999): they look at cointegration between different energy commodities
in the North American market and find predictable patterns in the natural gas–fuel oil
forward spread, but not in forward spreads involving electricity prices. In the same
issue of Energy Economics as the Serletis and Herbert paper, De Vany and Walls
(1999) provide one of the few papers on cointegration in spot markets. Using data
from the period 1994–96, the authors find cointegration patterns between 11 regional
power spot prices in the US. They find strong and direct relationships between the
markets, especially in off-peak periods, and conclude that the transportation capacities
lead to efficient and stable power prices.

The papers listed above demonstrate the different sources for cointegration: it pri-
marily stems from transportation linkages between different markets (power, crude
oil) or from processing and substitution linkages between different commodities
(power produced from natural gas, refined products produced from crude oil, nat-
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ural gas as a substitute for fuel oil). This study addresses both types of linkages and
includes the linkage between forward and spot prices. We provide a framework for
capturing the dynamics of the same commodity (natural gas or power) on multiple
markets, the dynamics between natural gas and power spot prices, and the dynamics
between spot and month-ahead forward prices. At the same time, we do not model
the joint dynamics of power and natural gas forward prices explicitly, but treat those
as exogenous.

3 A DESCRIPTION OF THE WESTERN EUROPEAN GAS AND
POWER MARKETS

The continental European natural gas market is in the middle of a process of liberal-
ization. A lot of progress is being made: trading hubs are developing, new regulations
aim for more even and fair access to gas assets and the member states are opening up
their home markets further and further. The various wholesale gas markets in Europe
are nevertheless at widely differing stages of development. They range from the UK’s
National Balancing Point (NBP), which is highly liquid and efficient, to markets such
as the Austrian CEGH or the Spanish CDG, where liquidity is barely established.

The most widely developed continental European gas markets are not far from the
UK. For a long time, the only direct connection between the UK and continental
Europe has been through a pipeline called the Interconnector, which lands at Zee-
brugge in Belgium, a location at which pipelines from Norway also hit the continent.
At this Zeebrugge location another trading hub, with rather good liquidity, has devel-
oped. A third important trading hub, called the Title Transfer Facility (TTF), has been
implemented in the Netherlands. This hub has a virtual nature, bringing together all
the gas in the Dutch high-calorific grid.

Natural gas is primarily used for heating, industrial processes and power production.
An important driver of the fluctuation in gas demand comes from gas-fired power
plants. Gas-fired generation acts as a swing or peak power supply in many European
countries, in combination with hydropower. European countries have different shares
of gas-fired generation. Our empirical analysis focuses on the Dutch power market,
which has a gas-fired generation share of almost 60%. Its spot market, the Amsterdam
Power Exchange (APX), is not the largest in Europe, but it is probably the most
dependent on what happens in the gas market. If we find clear relationships in the
Dutch market, then they may be translated to other markets. This connection is most
likely to be found with the nearby countries: Germany (consuming 22% of western
European electricity), Belgium and France (“market-coupling” takes place between
the Netherlands, Belgium and France).

Whereas Germany may be the dominating western European power market, it is
not “the leader” in the natural gas market. The German gas market is still developing
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30 C. de Jong and S. Schneider

FIGURE 1 Price history of the spot markets APX, TTF, Zeebrugge and NBP as examined
in this paper.
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NBP prices have been converted to €/MWh.

and the history of available market data is too short for an empirical study. The UK
(NBP), Belgian (the Zeebrugge gas spot market, or ZEE) and Dutch (TTF) natural gas
markets are more developed than the German one; data from those markets has been
used for this analysis. We therefore study their dynamics in conjunction with power
price data from the Dutch power market APX, see Figure 1 for a plot of historical
price data of these markets.

4 ENERGY SPOT-PRICE CHARACTERISTICS: CORRELATION AND
COINTEGRATION

Price levels and dynamics on different gas markets may vary, but they generally exhibit
various forms of seasonality, mean reversion, time-varying volatility, correlation and
cointegration between markets.

The concepts of correlation and cointegration deserve some extra explanation. In
financial and energy markets, time series are often assumed to be correlated in returns.
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Cointegration between gas and power spot prices 31

This is a useful concept and is especially applicable for analysis with a short-term
horizon, such as short-term risk and hedging calculations. However, even a strong
correlation of close to 1 does not ensure that prices of different time series stay
together over longer horizons. In energy markets, such economically driven longer-
term fundamentals do exist.

For circumstances where economic fundamentals eventually enforce a specific
relationship between two or more price series, the concept of cointegration becomes
very useful. Important work on this concept has been performed by Clive Granger
and Robert Engle. The two professors shared the 2003 Nobel Memorial Prize for their
innovation, first described in 1987.

The idea behind cointegration is that individual price series may be non-stationary,
but one or more weighted combinations of the series are stationary. In many cases,
stationarity can be achieved by first-order differencing, or by other mathematical
transformations such as seasonal adjustments. A typical application in financial mar-
ket analysis is therefore to model returns or price differences rather than price levels.
Yet this approach of differencing non-stationary economic series into stationary series
has been criticized for throwing out and ignoring valuable long-run equilibrium infor-
mation (Engle and Granger (1987)). Intuitively, cointegration among a set of variables
implies that there exist fundamental economic forces that make the variables move
together stochastically over time (Niemi (2003); Urbain (1993)). These movements
in variables are related in a predictable way to the discrepancy between observed and
equilibrium states.

The enforcement of the cointegration relationship is easiest to understand in the
so-called error-correction mechanism of two price series X and Y . Suppose that X
and Y are both random walks, so integrated of order 1, I.1/. If there is an equilibrium
relationship between X and Y equal to:

X.t/ D a0 C a1Y.t/ (1)

this means there is a linear combination ofX and Y that is stationary or integrated of
order 0, I.0/. The actual dynamics may consequently be described as:

X.t/ D X.t � 1/ � �.X.t � 1/ � a0 C a1Y.t � 1//C ut (2)

with ut being normally distributed and independent and � > 0 being the mean-
reversion rate.

The formulation shows that cointegration may be interpreted as mean reversion in
a weighted combination of two (or more) variables. This is how we implemented the
concept, in combination with a mean-reverting spot-to-forward price model.
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32 C. de Jong and S. Schneider

5 MEAN-REVERTING SPOT-PRICE MODELS FOR NATURAL GAS

In energy markets, the concept of stationarity is often directly studied in the context of
mean reversion. Mean reversion is most often defined in terms of a so-called Ornstein–
Uhlenbeck process, meaning that the model is specified in log prices (x D lnP ) not
absolute prices (P ). Assuming zero drift, it is specified as follows:

xt � xt�1 D ˛

�
� � xt�1 �

�2

2˛

�
C �"t with "t � N.0; 1/ (3)

The parameter ˛ is the daily mean-reversion rate, the parameter � is the daily standard
deviation of returns and � is the mean-reversion level.

The rate of mean reversion,˛, is an important statistic for various applications. First,
mean reversion ensures that the distribution of prices over longer horizons is narrower
than in a process of Brownian motion. Second, mean reversion introduces a form of
predictability to spot prices: for example, when prices are above their mean, we may
expect prices to fall in the following days, on average, which is useful information
for a storage operator (Boogert and De Jong (2008)).

The previously defined mean-reversion model has only one source of randomness
and is therefore a one-factor model. It has been used by several researchers (De Vany
and Walls (1999); Eydeland and Wolyniec (2003)) to conclude that spot prices in
power and gas markets are non-stationary. More realistically, the mean level should
itself be modeled as a stochastic factor. We therefore incorporate forward curve infor-
mation in the mean level. Blanco et al (2002) propose using the natural logarithm
of the front-month forward price as the mean level. This leads to the following basic
formulation of a gas spot-price model for market i , with log spot price ln Si;t and log
month-ahead price lnMi;t :

ln Si;t D ln Si;t�1 C ˛i .lnMi;t�1 � ln Si;t�1/C ui;t (4)

ui;t � N.0; �
2
i;t /; �2i;t D k1 C k2u

2
i;t�1 C k3�

2
i;t�1 (5)

The random element ui;t is assumed to be normally distributed with GARCH.1; 1/
volatility. It is correlated across markets i but not between time periods t . For sim-
plicity we do not assume volatility spillover effects, which could be captured in a
multivariate GARCH.

In Figure 2 on the facing page we show the joint dynamics of log spot and log M1 (we
use simplyM in place of M1 in the formulas in this paper) prices on theAPX,1 the TTF,
the Zeebrugge (ZEE) and the NBP markets from October 2004 to December 2008.

1 Note that the power forward prices are actually from the European Energy Derivatives Exchange,
the Dutch power forward market, since APX is a spot market only. However, to keep the notation
simple we denote both the Dutch spot and the forward as APX.
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FIGURE 2 Historical log spot and log M1 prices (bold lines).
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6 MEAN-REVERTING AND REGIME-SWITCHING SPOT-PRICE
MODELS FOR POWER

So far we have ignored the non-normal nature of the residuals of a mean-reverting price
model. Incorporation of jumps and spikes is quite important, however, in particular
for power spot prices. In De Jong and Huisman (2003) and De Jong (2006), an
empirical analysis of different power spot-price models is provided. The proposed
solution in most markets is to use regime-switching models: more specifically, the
“independent spike model”. In this paper we work with a model variant of De Jong
(2006) containing three potential regimes: a stable mean-reverting regime, a low-price
regime capturing down spikes and a high-price regime capturing up spikes. It takes
into account that spot prices in the Western European power markets may sometimes
briefly and strongly deviate from the usual price levels but that these deviations are
typically short lived and largely independent of previous and subsequent price levels.
The model is formulated in terms of the deseasonalized natural logarithm of price
levels xt , with a time-varying mean level �t defined later on.
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34 C. de Jong and S. Schneider

Mean-reverting regime M :

dxMt D ˛.�t � x
M
t�1/C �"t (6)

Spike regimes:

xSt D �t C

ntC1X
iD1

Zt;i

High spike regime H :

Zt;i � N.�
H ; �H /; nt � POI.�H /; �H > 0

Low spike regime L:

Zt;i � N.�
L; �L/; nt � POI.�L/; �L < 0

Markov transition matrix:

˘ D

2
64
1 � �MH � �ML �MH �ML

�HM 1 � �HM 0

�LM 0 1 � �LM

3
75

An additional modification was, however, necessary. This is because the month-
ahead price not only reflects the expected price level in the stable regime but is in fact
a probability-weighted expectation of price levels in all three regimes. For example,
when the high-price regime is especially likely to occur, then the mean level in the
stable mean-reverting regime should be lower than the month-ahead price.

More precisely, we need to derive A D Mt=EŒSt j St is no spike�, assuming that
the month-ahead price equalsM , which is the unconditional expected spot-price level.
To simplify the adjustment, we first assume that the probability of each regime is time
independent and therefore equal to the unconditional probability for each regime. We
call these probabilities �L and �H . Second, we approximate the Poisson distribution
of the log prices in the spike regimes with a normal distribution. It then holds that:

A D �M C �L exp.�L C 1
2
Y L�L

2

/C �H exp.�H C 1
2
YH�H

2

/ (7)

whereY L andYH are the expected number of jumps in regimesL andH , respectively,
exp.�LC 1

2
Y L�L

2
/�1 is the expected percentage deviation of the price in regimeL
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from the price in the stable regimeM and exp.�H C 1
2
YH�H

2
/� 1 is the expected

percentage deviation of the price in regimeH from the price in the stable regimeM .

7 A MULTI-MARKET COINTEGRATED SPOT-PRICE MODEL

Having formulated the individual market models we now move on to the multi-market
gas-power model. It is capable of generating daily simulations of day-ahead spot prices
of multiple power and gas markets. Each individual spot price is connected to the spot
and forward prices of one or more other markets.

Note that the model focuses on spot prices and assumes that the month-ahead
price simulations are exogenously generated. Of course, the performance of the spot-
price simulation model partly depends on how the relationships between products are
defined in the forward curve simulation model. We advocate the use of cointegration
models for forward prices; we have implemented such cointegrated forward price
models for daily use in our own companies. However, in this study we stick to historical
forward price dynamics and focus on the spot–forward spread in order to avoid mixing
up results from two separate models.

As described earlier, we include correlation in the residuals (ui;t ) between different
markets. This is an elementary approach to connect prices. However, as explained
before, this is not expected to tie prices together sufficiently in the long run. A likely
behavior is that prices of TTF and Zeebrugge, for example, diverge too often if the
simulation model only contains this correlation. In the history of both markets such
a departure has occurred only once, whereas in all other time periods the TTF–
Zeebrugge spread has seldom exceeded 10%. This is visible in Figure 3 on the next
page and Figure 4 on page 37.

The connection between the eight time series of spot and month-ahead price levels
has been tested using the Johansen (1988) cointegration test. The results indicate
that all variables are cointegrated with each other at the 95% confidence level. One
interpretation is that the connection between the series goes beyond the connection
between spot and M1 prices in the same market. We incorporate this in a mathematical
framework that stays close to the original single-market formulation.

To achieve this, we observe that mean reversion of spot-to-M1 price levels is almost
equal to mean reversion in the spot–M1 spread to zero. The only difference is that the
spread on the left-hand side of the second equation is lagged by one day:

ln Si;t D ln Si;t�1 C ˛i .lnMi;t�1 � ln Si;t�1/C ui;t

() ln Si;t � lnMi;t�1 D .1 � ˛i /.ln Si;t�1 � lnMi;t�1/C ui;t (8)

If this spot–M1 spread at time t for market i is additionally correlated to the same
spread at time t in markets j 2 Ji , then we capture cointegration between different
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FIGURE 3 Historical log spot prices.
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markets on the level of the spot–M1 spreads:

ln Si;t � lnMi;t�1 D .1 � ˛i /.ln Si;t�1 � lnMi;t�1/

C
X
j2Ji

.1 � ˛ij /.ln Sj;t�1 � lnMj;t�1/C ui;t (9)

where the residuals ui;t are normally distributed and are correlated to the other resid-
uals. This correlation in residuals captures the short-term relationships between mar-
kets, whereas the parameters ˛i;j capture the long-term relationships between mar-
kets. In the context of this article we incorporate the regime switches in the power
market by simply assuming that the spike states are totally disconnected from the
dynamics in any other market. More sophistication is possible though, in particu-
lar by letting the spike probabilities and levels across different power markets be
correlated and by introducing correlation between spikes and gas spot-price levels.

The set Ji contains the markets j to which the prices in market i are “connected”. It
is intuitive to assume, for example, that the spot–M1 spread of the TTF not only mean
reverts to 0 but also to the same spread in theAPX power market. So, when power spot
prices are temporarily above their (expected) month-ahead level, then gas spot prices
are probably also above their expected month-ahead level. This formulation has the
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FIGURE 4 Historical log M1 prices.
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additional advantage that we can keep on treating the M1 prices as exogenous: given
M1 prices, which may be cointegrated between markets as well, and given simulated
power spot prices, we can express the gas spot prices. Likewise, the Zeebrugge and
NBP gas spot–M1 spreads can be modeled as mean reverting to 0 and to the same
spread as in the other markets. Additional gas markets could be added, connecting
either the gas or power prices or a combination of these.

The primary motivation for our model specification lies in investigating the funda-
mental structures between spot and month-ahead prices as well as between markets.
In a more standard covariance or cointegration specification, where each series is
treated similarly, we would not be able to capture those fundamentals properly.

8 EMPIRICAL RESULTS

The model has been calibrated using historical data from the APX (power), the TTF,
Zeebrugge and the NBP (gas) markets for the period from October 2004 to December
2008, for working days only. NBP prices have been converted to €/MWh to get the
same unit for all price series. We applied a combination of least-squares regression
and maximum-likelihood estimation. Maximum-likelihood estimation was needed
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TABLE 1 GARCH(1,1) parameters.

APX TTF ZEE NBP

k1 — 0.0003 0.0006 0.0007
k2 — 0.3168 0.1386 0.2970
k3 — 0.6138 0.7128 0.5544
Volatility 0.1952 0.0693 0.0635 0.0709

for estimation of the GARCH.1; 1/ variance structure in the gas markets and the
regime-switching specification in the power market.

The period from November 2005 to March 2006 deserves special attention. It was
marked by a very tight supply situation in the UK gas market and a technical problem
with the largest UK gas storage facility (named Rough) due to a fire. In the data it
shows up as a very volatile period with very high prices on the NBP and Zeebrugge
gas markets, and a relative disconnection from the TTF market. We decided to leave
this period out of our analysis because we believe it was a (temporary) fundamental
break requiring an analysis of its own. This is the only situation in which we removed
outliers.

Using this data set of almost 1,000 days, we first estimate a simple mean-reverting
specification for each market individually. All four spot-price series are clearly mean
reverting to front month M1 with mean-reversion rates around 10% for the gas markets
and over 33% for theAPX power market. The residuals of the gas mean-reverting mod-
els exhibit large swings over time, which are captured in the GARCH.1; 1/ specifica-
tion by a rather high parameter for the previous day’s squared residual (the “response
parameter” k2), see Table 1. A simple mean-reverting model such as GARCH is cer-
tainly not sufficient to capture the dynamics in the power spot market. We therefore
estimate the regime-switching model with three independent regimes, see the results
in Table 2 on the facing page (see de Jong (2007) for a detailed description of the
maximum-likelihood method).

The mean-reversion parameter is lower than it is without the spike regimes. This
indicates that mean reversion is usually more limited and is only occasionally quite
strong: when prices move from the spike regime back to the normal regime. The
switch probabilities indicate that there is an approximately equal probability (4%)
of moving out of the normal regime to any of the spike regimes. Prices tend to stay
somewhat longer in the high-price regime than in the low-price regime.

We now move on to the model involving the four spot markets and the four month-
ahead markets as specified by Equation (9). The assumed relationship is captured as
follows and is not related to causality:

The Journal of Energy Markets Volume 2/Number 3, Fall 2009

© 2009 Incisive Media. Copying or distributing in print or electronic 
forms without written permission of Incisive Media is prohibited.



Cointegration between gas and power spot prices 39

TABLE 2 Parameter estimates for the regime-switching model APX.

Time-series parameters Switch probabilities‚ …„ ƒ ‚ …„ ƒ
Normal regime N ˛ 0.2230 From N to H 0.0426

� 3.5092 From H to N 0.2292
� 0.0945 From N to L 0.0374

From L to N 0.3704
High-spike regime H �H 0.2118

�H 0.1585
�H 0.6778

Low-spike regime L �L 0.1756
�L 0.1138
�L 0.6889

TABLE 3 Cointegration dependencies.

APX TTF ZEE NBP

Estimates

APX 0.6586 0.0006 �0.0210 �0.0395
TTF — 0.9043 0.6062 0.0240
ZEE — — 0.5151 0.5284
NBP — — — 0.5413

T-ratio

APX 27.6794 0.0652 �2.5250 �4.2734
TTF — 55.0105 22.0589 0.5680
ZEE — — 23.5939 13.7080
NBP — — — 25.8424

� the TTF market moves together with the APX market;

� the Zeebrugge market moves together with the TTF and APX markets; and

� the NBP market moves together with the Zeebrugge, TTF and APX markets.

The results of the parameter estimation are displayed in Table 3 and Table 4 on the
next page. The anticipated strong link between the NBP and Zeebrugge markets is
confirmed by the high cointegration parameter (0:5284, t D 13:7) and daily return
correlation (61.15%). Also strongly connected are the TTF and Zeebrugge markets,
with estimates of 0:6062 (t D 22:0589) and 42.33%. We conclude that the spot–M1
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TABLE 4 Correlations between residuals.

APX TTF ZEE NBP

APX 100.00% 1.73% �0.20% 1.08%
TTF �1.73% 100.00% 42.33% 49.81%
ZEE �0.20% 42.33% 100.00% 61.15%
NBP 1.08% 49.81% 61.15% 100.00%

spread of two “adjacent” gas markets (TTF–ZEE and ZEE–NBP) is explained by its
own spread of the previous day and by the “adjacent” spread of the previous day.

Somewhat surprising at first sight is the low cointegration (0:0240, t D 0:5680)
between TTF and NBP, at least in the chosen setting. To investigate this further
we also estimated the model in different orders. When we look at how TTF is
cointegrated with NBP without Zeebrugge in the equation, there is also a strong
and significant cointegration between TTF and NBP, albeit a somewhat lower one
(cointegration parameter D 0:4660, correlation of residuals D 42:06%). The exact
nature of this connection becomes even clearer when the places of NBP and ZEE are
swapped in the dependency chain. The last equation then yields a high cointegration
parameter of ZEE on TTF (0.3994), even higher than that on NBP (0.2702). Appar-
ently, TTF can be said to be linked to both Zeebrugge and NBP, but more strongly
to Zeebrugge, the closer market. A similar conclusion is that the data shows that the
chain of connection runs from TTF to Zeebrugge to NBP, or vice versa.

Maybe less expected is that the spot–M1 spreads of the three gas markets are
barely, or even negatively, correlated with the spot–M1 spread in the APX power
market. This holds for the price relationships (cointegration) as well as for the daily
return relationships (correlations). The negative estimates of the NBP market with
the APX market could indicate some form of multi-collinearity: the NBP market
is strongly connected to the Zeebrugge market and other potential relationships are
better left out of the equation.

A plausible explanation for the lack of a positive relationship between power and
gas markets in our model is that the relationship is already captured in the month-
ahead forward markets. The additional movements of spot prices around forward
prices in the power market are independent between power and gas. The fact that very
few power plants trade in the spot market to handle shortages and surpluses in natural
gas probably plays a role. Instead, most gas is sourced through longer-term contracts
with oil-indexed pricing; a little gas is sourced in the gas forward markets, leaving
almost nothing to be sourced in the spot market.

In order to verify the stability of the parameter estimates, we estimated parameters
with a moving time window of one year. The time step taken is half a year (110 days),
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creating eight subsamples, each with about 50% overlap with a neighbouring sub-
sample. Table 5 on the next page shows some results and we highlight three findings.
First, the lack of cointegration between the power market APX and any of the gas
markets is very consistent. Second, the cointegration between the gas markets, eg,
between Zeebrugge and TTF, is strong in all subsamples. Third, there seems to be
interplay between correlation and cointegration. In the subsamples with a relatively
high cointegration parameter, the correlation of residuals is somewhat below average,
and vice versa. Whether this is a coincidence or not is hard to judge based on only
eight estimates with overlapping data.

Based on the estimated parameters we generated 250 Monte Carlo simulations
of the four markets’ cointegrated log spreads. We limit our attention to the period
starting in April 2006: after the tight-supply period in the UK market. The month-
ahead forward price scenarios are the actual historical prices over this period. Note
that our model is independent of the nature of M1 price scenarios as it is only dealing
with the difference between log spot and log M1 prices. With 250 scenarios and 718
trading days per market, the total sample size is 179,500 per market.

To better understand the meaning of the parameters, Figure 5 on page 43, Figure 6
on page 44 and Table 6 on page 44 display the comovements of the (log) spot–M1
spreads between the different markets. For example, the spot–M1 spreads of the
TTF and Zeebrugge markets follow each other quite closely, whereas the TTF and
APX spot–M1 spreads are visibly disconnected. A very similar pattern is observed in
Figure 6 on page 44, displaying one representative scenario of the 250 simulations.

Whereas the connection between markets seems to be well captured, the distribution
of an individual market’s returns displays some discrepancies between history and
simulations, see Table 6 on page 44.

Simulated spreads in the three gas markets have hardly any skewness, which is an
artefact of the more or less symmetrical nature of the mean-reversion and GARCH
model elements. In contrast, historical spreads exhibit skewness; especially the large
positive (0.90) skewness for TTF is not taken up by the simulations. The different
historical skewness levels of NBP and Zeebrugge, compared with TTF, make it ques-
tionable though whether positive skewness for TTF is actually expected for the future
when the three markets will probably become even more similar.

The properties of (log) spread changes show a more consistent pattern between the
various markets: skewness is strongly negative for all gas markets (�0:58 to �1:15)
and kurtosis is rather high (13.21 to 22.65). The simulations have some left-skewness
as well (�0:33 to�0:48) but less than in the historical data. Similarly, the simulations
do not reach the high historical kurtosis levels. The simulations for the power market
(APX) match the historical properties much better. The regime-switching model for
power (APX) does allow for positive skewness and achieves a good fit with history
in terms of both skewness and kurtosis.
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TABLE 5 Moving window estimates of cointegration coefficients and of correlations.

Start and end dates‚ …„ ƒ
Oct 04 Mar 05 Aug 05 Jun 06 Nov 06 Apr 07 Sep 07 Feb 08

–Aug 05 –Jun 06 –Nov 06 –Apr 07 –Sep 07 –Feb 08 –Jul 08 –Dec 08

TTF

Coefficients APX 0.03 �0.04 0.02 0.03 �0.02 �0.03 �0.01 0.00
TTF 0.83 0.78 0.93 0.91 0.92 0.82 0.85 0.96

Correlation APX �2.17% �6.68% �14.09% �2.48% 1.98% 8.44% 15.28% 3.96%
ZEE 33.40% 32.71% 28.18% 38.05% 52.12% 62.96% 49.55% 37.80%
NBP 44.31% 48.76% 40.47% 41.71% 50.46% 58.63% 53.71% 39.16%

Zeebrugge

Coefficients APX 0.00 0.01 0.02 0.00 �0.05 �0.05 0.00 0.00
TTF 0.79 0.70 0.45 0.47 0.45 0.20 0.30 0.91
ZEE 0.33 0.40 0.65 0.64 0.65 0.71 0.56 0.25

Correlation APX �7.49% �2.70% �4.95% 2.59% 1.46% 5.49% 12.30% �0.74%
TTF 33.40% 32.71% 28.18% 38.05% 52.12% 62.96% 49.55% 37.80%
NBP 52.73% 49.48% 57.30% 63.99% 71.83% 75.26% 70.48% 59.97%
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FIGURE 5 Historical log spreads in a pairwise comparison.
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We conclude that it is worthwhile exploring a more advanced model of the gas
market residuals, potentially one that involves regime switches. The exact market
dynamics that create the non-normal behavior of the residuals is still to be investigated.
One possible explanation is the regular occurrence of maintenance to pipelines.

9 CONCLUDING REMARKS

Our aim was to show how cointegration can be applied to capture the joint dynamics
of multiple energy spot prices. We found clear indications of cointegration and a
specific connection pattern between the gas spot prices of the TTF, Zeebrugge and
NBP markets. For the connection between the gas spot markets and the power spot
market APX, while it turned out that cointegration was also found, it was on the
“forward time scale”. We ascribe the day-to-day comovement of the gas spot prices
to the strong physical connection of the markets through pipelines, whereas the looser
connection between gas and power prices is presumably due to gas-fired power plants
generally procuring on a longer-term basis.
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FIGURE 6 Simulated log spreads in a pairwise comparison.
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TABLE 6 Distribution statistics of historical and simulated data.

Historical data Simulated data‚ …„ ƒ ‚ …„ ƒ
APX TTF ZEE NBP APX TTF ZEE NBP

Log spread

Mean �0.04 �0.06 �0.07 �0.08 0.00 0.00 �0.01 �0.01
Standard 0.26 0.13 0.17 0.19 0.24 0.16 0.23 0.30
deviation
Skewness 0.76 0.90 �0.11 �0.25 0.70 �0.02 �0.05 �0.07
Kurtosis 7.56 19.62 13.30 9.01 6.33 3.93 3.58 3.47

Log spread changes
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Standard 0.22 0.07 0.07 0.08 0.23 0.07 0.11 0.14
deviation
Skewness �0.18 �1.15 �0.91 �0.58 �0.09 �0.33 �0.42 �0.48
Kurtosis 13.92 22.65 18.70 13.21 9.11 5.17 4.88 5.04
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With our specification of a cointegrating model we were able to separate spot from
forward effects and capture the strong connections of the gas markets. By defining a
spot mean-reversion level on the basis of month-ahead forward prices we plausibly
captured the comovement of the gas spot prices as cointegration of their spot–M1
spreads. The cointegration model is clearly structured and is flexible enough to be
employed as an application framework: different spot and forward model types and a
variable number of markets can easily be combined to meet the changing day-to-day
requirements of energy trading.

A number of potential topics for further research follow from our study. The empir-
ical results show that the GARCH.1; 1/ volatility model does not fully capture the
complexity of the historical gas market distributions with significant skewness and
kurtosis. A second interesting topic for further research is the linkage between spikes
of power spot prices on various markets. It is not obvious how one would correlate
regime probabilities, for example. Finally, the observed comovement of month-ahead
prices, in particular between gas and power prices, calls for an appropriate coin-
tegrated forward price model. The (increasing) interconnection of energy markets
motivated us to develop a separate cointegration framework for forward markets as
well. It includes related commodities, such as emission allowances, coal, oil and oil
distillates.

The historical record of about 10 years of energy trading in Europe shows that
the markets are characterized by mutual interactions in price dynamics. The joint
dynamics stem from various sources, ranging from elementary physical connections
to weather effects and economic conditions. With the many challenges that still need to
be addressed to capture those dynamics in adequate price models, we hope this paper
provides an interesting approach to capturing joint spot and forward price dynamics.
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