KYOS Webinar 11 May 2021 <u>www.kyos.com</u>, info@kyos.com

ENERGY CONSULTING

Webinar: Hedging price risks in renewable energy

Cyriel de Jong & Ewout Eijkelenboom KYOS Energy Analytics

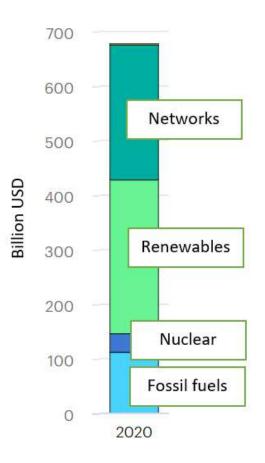
11 May 2021

Hedging price risk in renewable PPAs

Ewout Eijkelenboom and Cyriel de Jong www.kyos.com, +31 (0)23 5510221, info@kyos.com 15:00 Overview PPAs – Ewout Eijkelenboom

- Introduction in PPAs
- Value and risk elements of renewable energy projects

15:15 Hedging PPA price risk – Cyriel de Jong

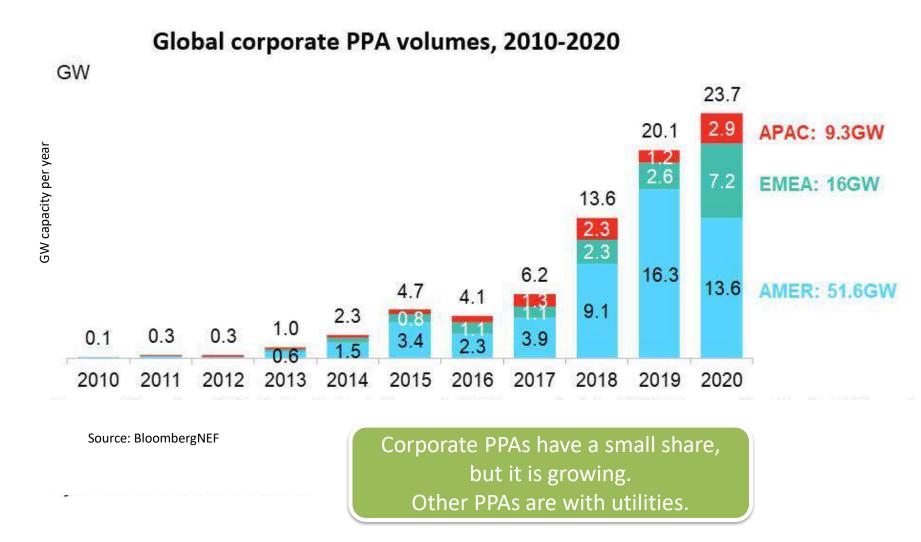

- Case study of a onshore wind PPA
- Performance of different hedging strategies

15:35 – Q&A and discussion

15:45 – End of the webinar

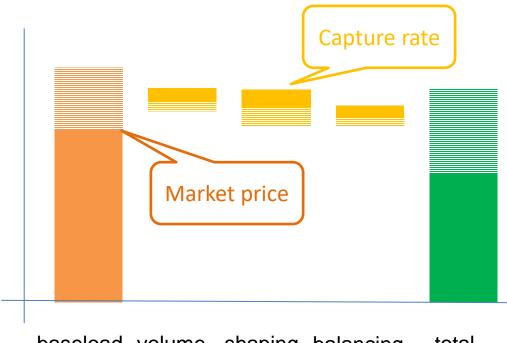
Why are PPAs such a hot topic?

- Global trend:
 - Expansion of renewable generation to combat global warming
 - End of stable feed-in-tariffs (FiT)
- Financing and risks:
 - Outright exposure to power price
 - Also to volume and other risks
- Financial reality:
 - Lenders require cash-flow predictability
 - PPA's with utilities and corporates are crucial to provide some predictability

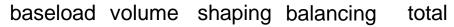

Global investments in power sector, IEA 2020

Different types of companies involved

Some typical questions around PPA's


- Project developer
 - Will the PPA guarantee cashflow and reduce risk?
- Investors/banks
 - Which risks are transferred via the PPA and which remain?
- Aggregator
 - How to price PPA from developers?
 - What risk to keep in portfolio?
- Corporates
 - What are the risks when buying a PPA?
 - How to define the price of a PPA?

Market rapidly growing

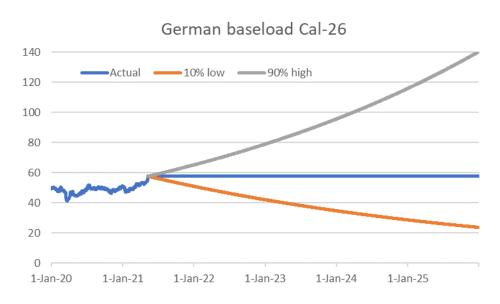


PPA value components and risks

Each PPA may distribute the value components differently, but ultimately they have to land in someone's pocket.

- Each value component has a level of uncertainty
 - understand how to hedge this risk
 - and what risks remain unhedged

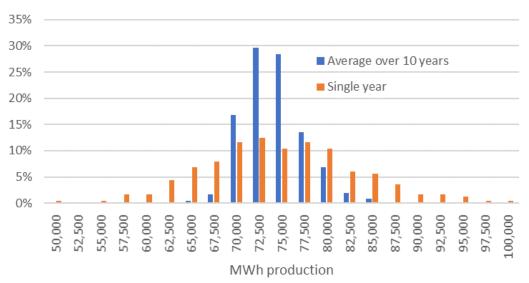
Risk component 1: baseload market price


Baseload power price

Is the main source of uncertainty for merchant projects. Uncertainty may be divided into:

- Temporary price changes (individual bad year)
- Structural price changes (parallel shift in the forward curve)

Tools to hedge


- Fixed price PPA
- Market hedges (static/dynamic strategy)

Risk component 2: volume

Volume risk

- The actual production volume may be lower than expected (e.g. less wind)
- Large risk for an individual year (+/- 20%)
- Smaller risk for average over many years

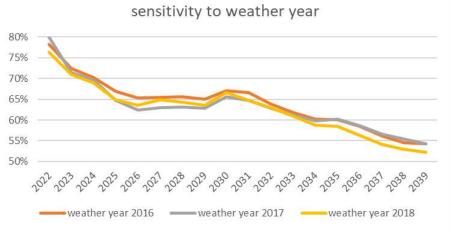
Distribution of annual production volume

Tools to hedge

- PPA, pay-as-produced
- Well diversified portfolio (technologies, geographies)

Interaction with price

- An unhedged project is exposed to risk of a low market price
- A project hedged with a baseload PPA is exposed to risk of a high market price and low project volume


Risk component 3: shape risk

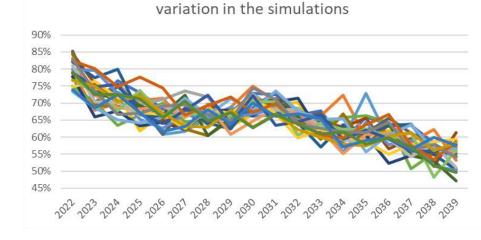
Seasonal shape risk

 Risk of low summer prices versus winter (solar) or vice versa (wind)

Capture rate risk

 Intraday patterns are uncertain
 Risks depend on long-term factors
 (generation mix, storage, interconnection capacities) and short-term factors (weather)

Capture rates Nordic wind farm:


Hedging tools

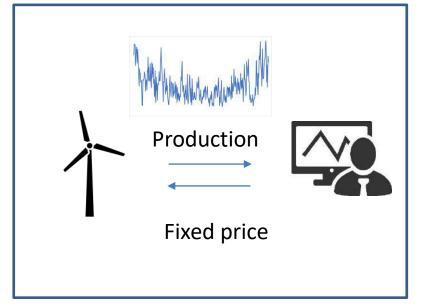
- Difficult to hedge
- Pay-as-produced PPA

Risk assessment

- Use fundamental model with different scenarios (structural)
- Use simulations of capture rates (short-term)

Capture rates Nordic wind farm:

Case study for hedging PPA price risk


Hedging strategies

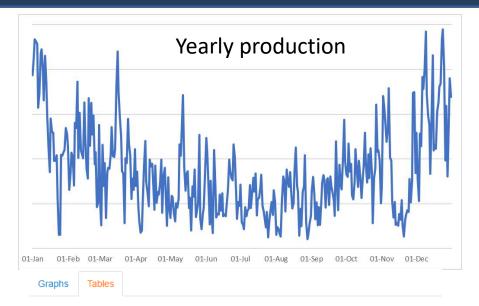
Case study

On-shore wind project in Germany.

Aggregator purchases 10 year payas-produced PPA at fixed price.

So, aggregator takes over all price and volume risks.

We analyze different strategies

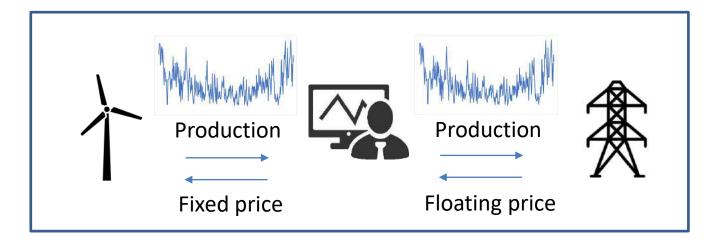

- Sell in market, no forward hedging
- Hedge with annual baseload PPA at fixed price
- Hedge with stack and roll strategy

Production profiles

Daily profiles show typical pattern of Northwest European wind farm.

Capture rate forecast made with fundamental power market model KyPF.

Yearly Valuation


Year	Positions	Earnings	CF PPA	CF Market	CF Imbalance
	(MWh)	(EUR)	(EUR)	(EUR)	(EUR)
2022	75 941	460 417	-4 662 780	5 161 168	-37 971
2023	74 738	248 948	-4 588 927	4 875 244	-37 369
2024	76 236	76 455	-4 680 877	4 795 450	-38 118
2025	75 063	16 514	-4 608 845	4 662 890	-37 531
2026	75 513	-64 308	-4 636 499	4 609 948	-37 757
2027	74 986	-149 766	-4 604 147	4 491 875	-37 493
2028	75 937	-185 824	-4 662 526	4 514 671	-37 968
2029	75 354	-201 094	-4 626 710	4 463 293	-37 677
2030	74 650	-85 313	-4 583 500	4 535 512	-37 325
2031	75 206	-57 853	-4 617 644	4 597 394	-37 603
Total	753 623	58 177	-46 272 454	46 707 440	-376 812

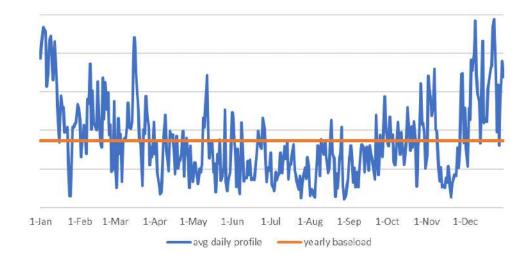
Strategy 1 – sell in spot market

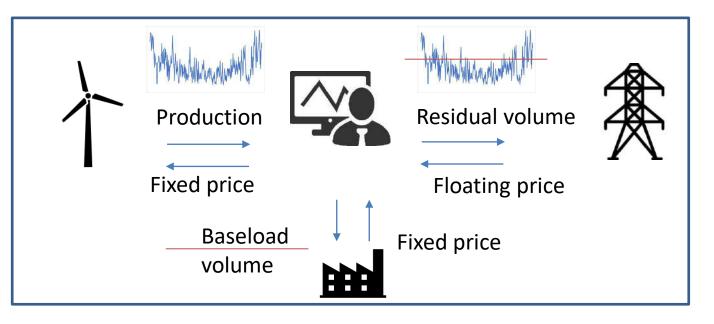
Offtaker markets full output in day-ahead spot market

- Baseload price risk (large!)
- Risk of changes in price shape and capture rate
- Forecast error lead to imbalance costs

Strategy 1 – Results in high risks

• We look at the distribution of earnings (KYOS PPA software)


• <u>Very wide</u> earnings distribution, primarily price risk



Strategy 2 – Hedge with baseload PPA

Aggregator sells fixed price, baseload 10 year corporate PPA at P50 volume. Risks:

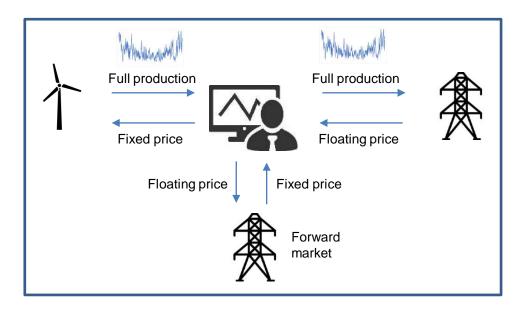
- Shape risk
- Volume risk
- Imbalance risk

Strategy 2 – clearly risk reducing

- Very strong reduction of risk in earnings distribution: from 24 to 4.9 mln € for the 95% 'worst case' result.
- Nature of the risk has changed: worst case result when production volume is low and market price is high:
 - In one scenario, the average generation is 9% below P50 and the average market price 189 €/MWh

Strategy 2 – improvements

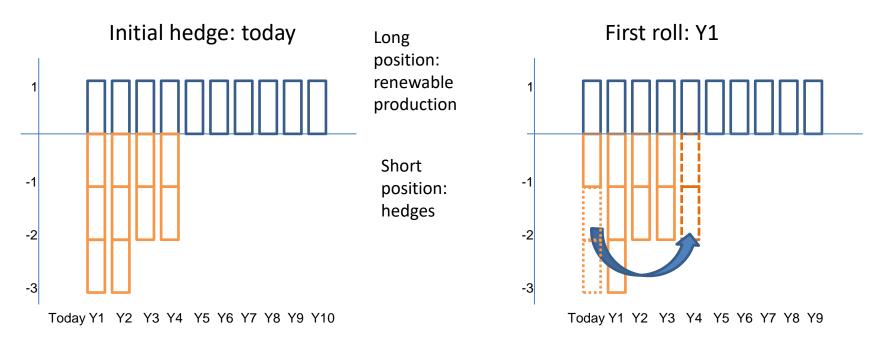
- Baseload PPA was volume neutral hedge based on P50
- Very common in practice, but suboptimal!
- Hedge can be improved by:
 - Shape baseload profile in monthly blocks
 - Reduce the hedge volume: value-neutral hedge is better than volume neutral



- Hedge reduced to 85% based on capture rate
- Reduces 95% EaR from
 6.5 €/MWh to 4.0 €/MWh

Strategy 3: stack and roll

- Use standard forward and futures in the market
- But: liquid products are at most 3-4 years out
- 'Solution': place the exposures of longer horizons (5+) into shorter-term contracts (1-4 years)
- Every year, roll from short-term to long-term *tradable* contracts



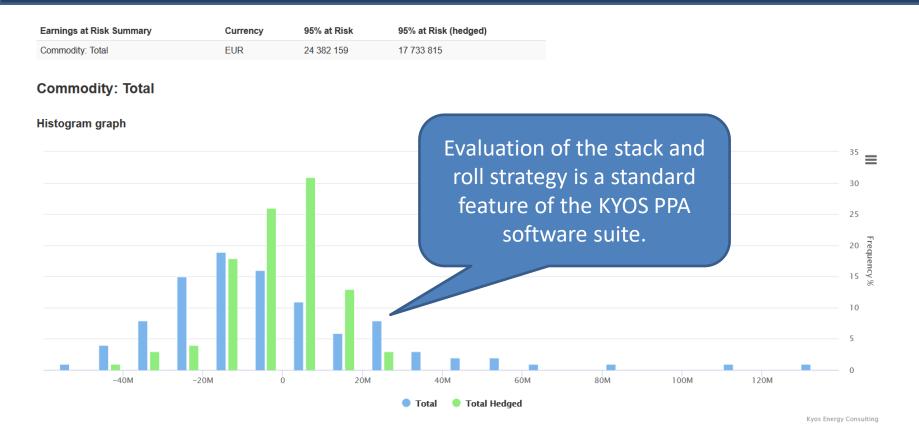
Strategy 3 – Stack and roll

Stack and roll strategy:

- Hedge illiquid periods with liquid periods
- Roll position when they become tradable

Strategy 3 – Stack and roll

Advantages


- Way to hedge price exposure of illiquid long-term periods
- Intuitive approach

Disadvantages

- Requires enough liquidity in the forward market. Every year requires large position changes and you may be squeezed.
- Requires capital to deal with margin calls (MtM losses).
- Trading costs to make rolls each year.
- Risk of breaking correlations between the years. Example roll:
 - Buy (back) 2022 year contract @ 60 €/MWh
 - Sell 2024 year contract @ 50 €/MWh

Spot market

Strategy 3 – Stack and roll

- Earnings-at-Risk reduced from 24 to 17.7 mln €
- More positive: number of 'bad' scenarios largely reduced

KYOS approach to valuation & risk assessment of PPAs and renewable projects

KYOS approach

- Each project and PPA is unique:
 - Location and technology
 - Market and regulation
 - Contractual parameters
- But all project and PPA assessments require insight in:
 - Expected volumes, prices and cash-flows
 - Distribution of volumes, prices and cash-flows
 - Possibilities to reduce risk with the right structures and hedging strategy

PPA Assessment

KYOS	5					Test	Ewout Eijkelenboom -
Settings	Price data Time series Curves Assets & Contracts A	nalytics Custom analytics	Reports Logs				
	rototype Templates						
KyPPA							Create profile
Show all t	filters Load filter Save filter Reset selection						Filter
IDs	×						
5 results fou	ind_						
							20 per page 🗸
🗆 ID 🔺	Name	Simulation profile	Scheduled	Automated	⇒ Jobs	Reporting	¢
5	Example DE Wind Fixed Price	DE power for Halle	No 🗹		6	Yes 💋	Last result 💌
6	Example DE Wind Indexed Price Cap/Floor	DE power for Halle	No 🗹		3	Yes 🗹	Last result 💌
□ 7	Example DE Solar Fixed Price	DE power for Parchim	No 🔽		3	Yes 🛃	Last result 💌

 \bigcirc

 \bigcirc

No 2

NO C

KyPPA module:

Demo RO Solar Fixed Price

Demo RO Solar Spot Index

- Out of the box standard PPA pricing structures •
- Possibility to define your own pricing structures •

RO power with solar demo

RO power with solar demo

Last result

Last result .

No 2

NO 🖌

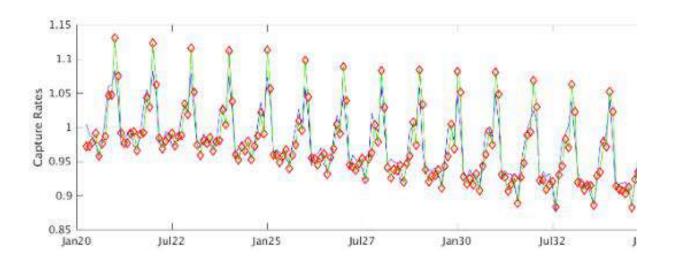
1

7

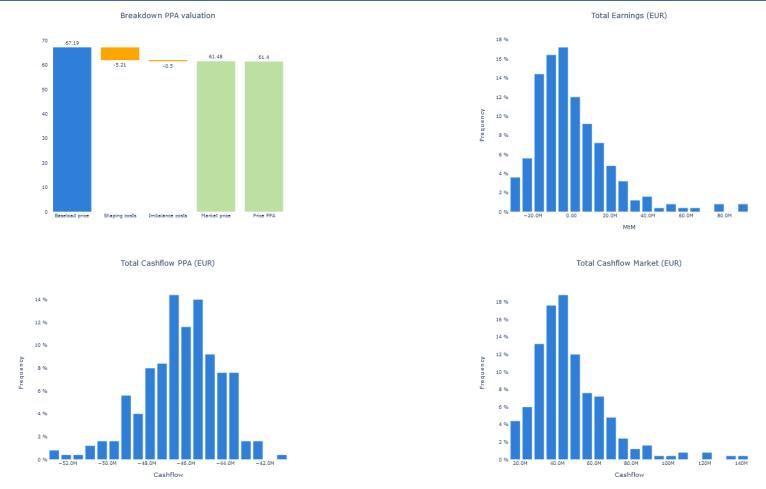
9

10

Simulate prices and volumes


- A single forecast of power prices is not enough
- Monte Carlo simulations of power prices:
 - Forward prices and hourly spot prices
 - Arbitrage-free: on average equal to forward curve

sult	Forward prices (rolling)	~	Output	Percentiles	~	Percentiles	5, 10, 25, 50, 75, 90, 95	~
mency	EUR	~						
ommodity			Product		Maturity		Delivery type	
German Pov	ver 🗸		Month	~	1	~	Baseload 🗸	
om 1m :	8m 6m YTD 1y All					Ĩ	From Feb 11, 2021 To M	lov 30, 2023
oom 1m :	3m 6m YTD 1y All						From Feb 11, 2021 To 1	Nov 30, 2023
xom 1m :	Sim 6m YTD 1y All						From Feb 11, 2021 To 1	lov 30. 2023



Simulate prices and volumes

- A single scenario of production forecast is not enough
- Production is negatively correlated to power prices
- Simulate weather and renewable power:
 - Smart historical sampling from historical years
 - Imposing a negative correlation with the power prices to meet the expected capture rates

PPA risk assessment

• Assess value and risk profiles per project and per PPA

PPA risk assessment

- Full risk profile of one project or portfolio of projects
- Include effect of hedging strategies, static or dynamic

KYOS supports all players in the renewable sector

- Valuation support during PPA negotiation/M&A activities
- Regular PPA valuations for accounting and trading purposes
- Support with arbitration cases
- KYOS Analytical Platform complete tool to capture and manage PPAs
- Python scripts allows user to create own PPA pay-off formulas
- Detailed risk reports for managers and analysts

Thank you

Time for Q&A

We look forward to supporting you in the rapidly changing energy sector!

Cyriel de Jong <u>dejong@kyos.com</u> Ewout Eijkelenboom ewout@kyos.com

KYOS Energy Analytics Nieuwe Gracht 49 2011ND Haarlem, The Netherlands

